16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Abstract

General Description The MAX5621/MAX5622/MAX5623 are 16-bit digital-toanalog converters (DACs) with 16 sample-and-hold (SHA) outputs for applications where a high number of programmable voltages are required. These devices include a clock oscillator and a sequencer that updates the DAC with codes from an internal SRAM. No external components are required to set offset and gain. The MAX5621/MAX5622/MAX5623 feature a -4.5 V to +9.2 V output voltage range. Other features include a $200 \mu \mathrm{~V} /$ step resolution, with output linearity error, typically 0.005% of full-scale range (FSR). The 100 kHz refresh rate updates each SHA every $320 \mu s$, resulting in negligible output droop. Remote ground sensing allows the outputs to be referenced to the local ground of a separate device. These devices are controlled through a 20 MHz SPI ${ }^{\text {TM }} /$ QSPITM/MICROWIRE ${ }^{\text {TM }}$-compatible 3-wire serial interface. Immediate update mode allows any channel's output to be updated within $20 \mu \mathrm{~s}$. Burst mode allows multiple values to be loaded into memory in a single, high-speed data burst. All channels are updated within $330 \mu s$ after data has been loaded. Each device features an output clamp and output resistors for filtering. The MAX5621 features a 50Ω output impedance and is capable of driving up to 250 pF of output capacitance. The MAX5622 features a 500Ω output impedance and is capable of driving up to 10 nF of output capacitance. The MAX5623 features a $1 \mathrm{k} \Omega$ output impedance and is capable of driving up to 10 nF of output capacitance. The MAX5621/MAX5622/MAX5623 are available in 64-pin TQFP ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$) and 68 -pin thin QFN ($10 \mathrm{~mm} \times$ $10 \mathrm{~mm})$ packages.

Applications

MEMS Mirror Servo Control Industrial Process Control Automatic Test Equipment Instrumentation

SPI and QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor, Corp.

Features

- Integrated 16-Bit DAC and 16-Channel SHA with SRAM and Sequencer
- 16 Voltage Outputs
- 0.005\% Output Linearity
- $200 \mu \mathrm{~V}$ Output Resolution
- Flexible Output Voltage Range
- Remote Ground Sensing
- Fast Sequential Loading: 1.3μ s per Register
- Burst and Immediate Mode Addressing
- No External Components Required for Setting Gain and Offset
- Integrated Output Clamp Diodes
- Three Output Impedance Options MAX5621 (50), MAX5622 (500), and MAX5623 (1k Ω)

Ordering Information

PART	TEMP RANGE*	PIN-PACKAGE
MAX5621UCB	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64 TQFP
MAX5621UTK	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	68 Thin QFN-EP**
MAX5622UCB	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64 TQFP
MAX5622UTK	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	68 Thin QFN-EP**
MAX5623UCB	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	64 TQFP
MAX5623UTK	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	68 Thin QFN-EP**

*For other temperature ranges, contact factory.
${ }^{* *} E P=$ Exposed pad.
Pin Configurations

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

ABSOLUTE MAXIMUM RATINGS

VDD to AGND.	. 3 V to +12.2 V
Vss to AGND	6.0V to +0.3 V
$V_{\text {DD }}$ to $V_{S S}$..+15V
VLDAc, Vlogic, Vlsha to AGND or DGND	-0.3V to +6V
REF to AGND.	-0.3V to +6V
GS to AGND.	$V_{S S}$ to V ${ }_{\text {DD }}$
CL and CH to AGND.	$V_{S S}$ to V ${ }_{\text {DD }}$
Logic Inputs to DGND	-0.3V to +6V
DGND to AGND.	.-0.3V to +2V
Maximum Current into OUT_	$\pm 10 \mathrm{~mA}$

Maximum Current into Logic Inputs $\pm 20 \mathrm{~mA}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
64-Pin TQFP (derate $13.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1066 mW 68 -Pin Thin QFN (derate $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)...... 2285 mW
Operating Temperature Range.............................. $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+10 \mathrm{~V}, \mathrm{~V}_{S S}=-4 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGI}}=\mathrm{V}_{\mathrm{LDAC}}=\mathrm{V}_{\mathrm{LSHA}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, CLKSEL $=+5 \mathrm{~V}$, fECLK $=400 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS						
Resolution	N		16			Bits
Output Range	Vout_	(Note 1)	$\begin{gathered} V_{\text {SS }}+ \\ 0.75 \end{gathered}$		$\begin{gathered} \text { VDD }- \\ 2.4 \end{gathered}$	V
Offset Voltage		Code $=4$ F2C hex		± 15	± 200	mV
Offset Voltage Tempco				± 50		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Error		(Note 2)			± 1	\%
Gain Tempco				± 5		ppm $/{ }^{\circ} \mathrm{C}$
Integral Linearity Error	INL	Vout_ $=-3.25 \mathrm{~V}$ to +7.6 V		0.005	0.015	\%FSR
Differential Linearity Error	DNL	VOUT_ $=-3.25 \mathrm{~V}$ to +7.6 V ; monotonicity guaranteed to 14 bits		± 1	± 4	LSB
Maximum Output Drive Current	IOUT	Sinking and sourcing	± 2			mA
DC Output Impedance	Rout	MAX5621	35	50	65	Ω
		MAX5622	350	500	650	
		MAX5623	700	1000	1300	
Maximum Capacitive Load		MAX5621		250		pF
		MAX5622		10		nF
		MAX5623		10		
DC Crosstalk		Internal oscillator enabled (Note 3)		-90		dB
Power-Supply Rejection Ratio	PSRR	Internal oscillator enabled		-80		dB

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+10 \mathrm{~V}, V_{S S}=-4 \mathrm{~V}, V_{L O G I C}=V_{L D A C}=V_{L S H A}=+5 \mathrm{~V}, V_{R E F}=+2.5 \mathrm{~V}, A G N D=D G N D=V_{G S}=0 \mathrm{~V}, R L \geq 10 \mathrm{M} \Omega, C L=50 \mathrm{pF}\right.$, CLKSEL $=+5 \mathrm{~V}, \mathrm{f}_{\mathrm{ECLK}}=400 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS						
Sample-and-Hold Settling		(Note 4)			0.08	\%
SCLK Feedthrough				0.5		nV -s
fSEQ Feedthrough				0.5		nV -s
Hold-Step				0.25	1	mV
Droop Rate		Vout_ $=0 \mathrm{~V}$ (Note 5), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	40	mV / s
Output Noise				250		$\mu \mathrm{V}_{\text {RMS }}$
REFERENCE INPUT						
Input Resistance			7			$\mathrm{k} \Omega$
Reference Input Voltage	VREF			2.5		V
GROUND-SENSE INPUT						
Input Voltage Range	VGS		-0.5		+0.5	V
Input Bias Current	IGS	$-0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GS}} \leq+0.5 \mathrm{~V}$	-60		0	$\mu \mathrm{A}$
GS Gain		(Note 6)	0.998	1	1.002	V/V
DIGITAL INTERFACE DC CHARACTERISTICS						
Input High Voltage	V_{IH}		2.0			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
Input Current					± 1	$\mu \mathrm{A}$
TIMING CHARACTERISTICS (Figure 2)						
Sequencer Clock Frequency	fSEQ	Internal oscillator	80	100	120	kHz
External Clock Frequency	feclk	(Note 7)			480	kHz
SCLK Frequency	fsclk				20	MHz
SCLK Pulse Width High	tch		15			ns
SCLK Pulse Width Low	tCL		15			ns
$\overline{\mathrm{CS}}$ Low to SCLK High Setup Time	tcsso		15			ns
$\overline{\mathrm{CS}}$ High to SCLK High Setup Time	tCSS1		15			ns
SCLK High to $\overline{\mathrm{CS}}$ Low Hold Time	tCSHO		10			ns

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+10 \mathrm{~V}, V_{S S}=-4 \mathrm{~V}, V_{L O G I C}=V_{L D A C}=V_{L S H A}=+5 \mathrm{~V}, V_{R E F}=+2.5 \mathrm{~V}, A G N D=D G N D=V_{G S}=0 \mathrm{~V}, R L \geq 10 \mathrm{M} \Omega, C L=50 \mathrm{pF}\right.$, CLKSEL $=+5 \mathrm{~V}, \mathrm{f}_{\mathrm{ECLK}}=400 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK High to $\overline{\mathrm{CS}}$ High Hold Time	tCSH1		0			ns
DIN to SCLK High Setup Time	tDS		15			ns
DIN to SCLK High Hold Time	tD		0			ns
$\overline{\mathrm{RST}}$ to $\overline{\mathrm{CS}}$ Low		(Note 8)			500	$\mu \mathrm{s}$
POWER SUPPLIES						
Positive Supply Voltage	VDD	(Note 9)	8.55	10	11.60	V
Negative Supply Voltage	$\mathrm{V}_{\text {SS }}$	(Note 9)	-5.25	-4	-2.75	V
Supply Difference		VDD - VSS (Note 9)			14.5	V
Logic Supply Voltage	VLOGIC, VLDAC, VLSHA		4.75	5	5.25	V
Positive Supply Current	IDD			32	42	mA
Negative Supply Current	ISS			32	40	mA
Logic Supply Current	ILOGIC	(Note 10)		1	1.5	mA
		fsCLK $=20 \mathrm{MHz}$ (Note 11)		2	3	

Note 1: The nominal zero-scale $($ code $=0)$ voltage is -4.0535 V . The nominal full-scale (code $=$ FFFF hex) voltage is +9.0535 V . The output voltage is limited by the Output Range specification, restricting the usable range of DAC codes. The nominal zeroscale voltage can be achieved when $\mathrm{V}_{S S}<-4.9 \mathrm{~V}$, and the nominal full-scale voltage can be achieved when $\mathrm{V}_{\mathrm{DD}}>+11.5 \mathrm{~V}$.
Note 2: Gain is calculated from measurements:
for voltages $V_{D D}=10 \mathrm{~V}$ and $\mathrm{V}_{S S}=-4 \mathrm{~V}$ at codes C 000 hex and 4F2C hex
for voltages $V_{D D}=11.6 \mathrm{~V}$ and V SS $=-2.9 \mathrm{~V}$ at codes FFFF hex and 252E hex
for voltages $V_{D D}=9.25 \mathrm{~V}$ and $\mathrm{V}_{S S}=-5.25 \mathrm{~V}$ at codes D4F6 hex and 0 hex
for voltages $\mathrm{V}_{\mathrm{DD}}=8.55 \mathrm{~V}$ and V SS $=-2.75 \mathrm{~V}$ at codes C 74 A hex and 281 C hex
Note 3: Steady-state change in any output with an 8 V change in an adjacent output.
Note 4: Settling during the first update for an 8 V step. The output settles to within the linearity specification on subsequent updates. Tested with an external sequencer clock frequency of 480 kHz .
Note 5: External clock mode with the external clock not toggling.
Note 6: The output voltage is the sum of the DAC output and the voltage at GS. GS gain is measured at 4F2C hex.
Note 7: The sequencer runs at $\mathrm{fSEQ}=\mathrm{fECLK} / 4$. Maximum speed is limited by setting of the DAC and SHAs. Minimum speed is limited by acceptable droop and update time after a Burst Mode Update.
Note 8: VDD rise to $\overline{C S}$ low $=500 \mu$ s maximum.
Note 9: Guaranteed by gain-error test.
Note 10: The serial interface is inactive. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {LOGIC }}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$.
Note 11: The serial interface is active. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {LOGIC }}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$.

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Typical Operating Characteristics

POSITIVE SUPPLY PSRR
VS. FREQUENCY

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}, \mathrm{~V}_{S S}=-4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Pin Description

PIN		NAME	FUNCTION
TQFP	THIN QFN		
$\begin{gathered} 1,2,20,22,24,27,29,34, \\ 36,38,42,44,50,52,54, \\ 57,59,61 \end{gathered}$	$\begin{aligned} & 1,2,17,21,23,25,28,30, \\ & 34,36,38,40,44,46,51, \\ & 53,55,57,60,62,64,68 \end{aligned}$	N.C.	No Connection. Not internally connected.
3	3	GS	Ground-Sensing Input
4	4	VLDAC	+5V DAC Power Supply
5	5	$\overline{\mathrm{RST}}$	Reset Input
6	6	$\overline{\mathrm{CS}}$	Chip-Select Input
7	7	DIN	Serial Data Input
8	8	SCLK	Serial Clock Input
9	9	VLOGIC	+5V Logic Power Supply
10	10	IMMED	Immediate Update Mode
11	11	ECLK	External Sequencer Clock Input
12	12	CLKSEL	Clock-Select Input
13	13	DGND	Digital Ground
14	14	VLSHA	+5V Sample-and-Hold Power Supply
15, 25, 40, 55, 62	15, 26, 42, 58, 65	AGND	Analog Ground
16, 32, 46	16, 33, 48	$V_{S S}$	Negative Power Supply
17, 39, 48	18, 41, 50	VDD	Positive Power Supply
18, 33, 49	19, 35, 52	CL	Output Clamp Low Voltage
19	20	OUTO	Output 0
21	22	OUT1	Output 1
23	24	OUT2	Output 2
26	27	OUT3	Output 3
28	29	OUT4	Output 4
30	31	OUT5	Output 5
35	37	OUT6	Output 6
37	39	OUT7	Output 7
41	43	OUT8	Output 8
43	45	OUT9	Output 9
45	47	OUT10	Output 10
31, 47, 64	32, 49, 67	CH	Output Clamp High Voltage
51	54	OUT11	Output 11
53	56	OUT12	Output 12
56	59	OUT13	Output 13
58	61	OUT14	Output 14
60	63	OUT15	Output 15
63	66	REF	Reference Voltage Input

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Figure 1. Functional Diagram

Figure 2. Serial Interface Timing Diagram

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Detailed Description

Digital-to-Analog Converter

The MAX5621/MAX5622/MAX5623 16-bit digital-to-analog converters (DACs) are composed of two matched sections. The four MSBs are derived through 15 identical matched resistors and the lower 12 bits are derived through a 12-bit inverted R-2R ladder.

Sample-and-Hold Amplifiers

The MAX5621/MAX5622/MAX5623 contain 16 buffered sample/hold circuits with internal hold capacitors. Internal hold capacitors minimize leakage current, dielectric absorption, feedthrough, and required board space. The MAX5621/MAX5622/MAX5623 provide a very low $1 \mathrm{mV} / \mathrm{s}$ droop rate.

Output

The MAX5621/MAX5622/MAX5623 include output buffers on each channel. The device contains output resistors in series with the buffer output (Figure 3) for ease of output filtering and capacitive load driving stability.
Output loads increase the analog supply current (IDD and ISS). Excessively loading the outputs drastically increases power dissipation. Do not exceed the maximum power dissipation specified in the Absolute Maximum Ratings.
The maximum output voltage range depends on the analog supply voltages available and the output clamp voltages (see the Output Clamp section):

$$
\left(\mathrm{V}_{S S}+0.75 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{OUT}}^{-}, ~ \leq\left(\mathrm{V}_{\mathrm{DD}}-2.4 \mathrm{~V}\right)
$$

The device has a fixed theoretical output range determined by the reference voltage, gain, and midscale offset. The output voltage for a given input code is calculated with the following:

$$
\begin{aligned}
V_{\text {OUT }}= & \left(\frac{\text { code }}{65535}\right) \times V_{\text {REF }} \times 5.2428- \\
& \left(1.6214 \times V_{\text {REF }}\right)+V_{G S}
\end{aligned}
$$

where code is the decimal value of the DAC input code, VREF is the reference voltage, and VGS is the voltage at the ground-sense input. With a 2.5 V reference, the nominal end points are -4.0535 V and +9.0535 V (Table 1). Note that these are "virtual" internal end-point voltages and cannot be reached with all combinations of negative and positive power-supply voltages. The nominal, usable DAC end-point codes for the selected power supplies can be calculated as:

$$
\begin{aligned}
& \text { Lower end-point code }= 32768-((2.5 \mathrm{~V}-(\mathrm{V} \text { SS }+0.75) / \\
&200 \mu \mathrm{~V})(\text { result } \geq 0) \\
& \text { Upper end-point code }= 32768+((\mathrm{VDD}-2.4-2.5 \mathrm{~V}) / \\
&200 \mu \mathrm{~V})(\text { result } \leq 65535)
\end{aligned}
$$

Figure 3. Analog Block Diagram
Table 1. Code Table

DAC INPUT CODE	NOMINAL OUTPUT	V
MSB LSB	VOLTAGE (V)	$V_{\text {REF }}=+2.5 \mathrm{~V}$
1111111111111111	9.0535	Full-scale output
1100011101001010	6.15	Maximum output with $\mathrm{V}_{\mathrm{DD}}=8.55 \mathrm{~V}$
1000000000000000	2.5	Midscale output
0100111100101100	0	VoUT_ = 0; all outputs default to this code after power-up
0010100000011100	-2.0	Minimum output with $\mathrm{V}_{S S}=-2.75 \mathrm{~V}$
0000000000000000	-4.0535	Zero-scale output

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

The resistive voltage-divider formed by the output resistor (RO) and the load impedance (RL), scales the output voltage. Determine Vout_ as follows:

$$
\begin{aligned}
& \text { Scaling Factor }=\frac{R_{L}}{R_{L}+R_{O}} \\
& V_{\text {OUT_- }}=V_{\text {CHOLD }} \times \text { scaling factor }
\end{aligned}
$$

Ground Sense

The MAX5621/MAX5622/MAX5623 include a groundsense input (GS), which allows the output voltages to be referenced to a remote ground. The voltage at GS is added to the output voltage with unity gain. Note that the resulting output voltage must be within the valid output voltage range set by the power supplies.

Output Clamp

The MAX5621/MAX5622/MAX5623 clamp the output between two externally applied voltages. Internal diodes at each channel restrict the output voltage to:

$$
\left(\mathrm{V}_{\mathrm{CH}}+0.7 \mathrm{~V}\right) \geq \mathrm{V}_{\text {OUT_ }} \geq\left(\mathrm{V}_{\mathrm{CL}}-0.7 \mathrm{~V}\right)
$$

The clamping diodes allow the MAX5621/MAX5622/ MAX5623 to drive devices with restricted input ranges. The diodes also allow the outputs to be clamped during power-up or fault conditions. To disable output clamping, connect CH to V_{DD} and CL to V_{SS}, setting the clamping voltages beyond the maximum output voltage range.

Serial Interface

The MAX5621/MAX5622/MAX5623 are controlled by an SPI/QSPI/MICROWIRE-compatible 3-wire interface. Serial data is clocked into the 24 -bit shift register in an MSB-first format, with the 16-bit DAC data preceding the 4-bit SRAM address, required zero bit, 2-bit control, and a fill 0 (Figure 4). The input word is framed by $\overline{\mathrm{CS}}$. The first rising edge of SCLK after $\overline{\mathrm{CS}}$ goes low clocks in the MSB of the input word.
When each serial word is complete, the value is stored in the SRAM at the address indicated and the control bits are saved. Note that data can be corrupted if $\overline{\mathrm{CS}}$ is not held low for an integer multiple of 24 bits.
All of the digital inputs include Schmitt-trigger buffers to accept slow-transition interfaces. Their switching threshold is compatible with TTL and most CMOS logic levels.

Table 2. Channel/Output Selection

A3	A2	A1	A0	OUTPUT
0	0	0	0	OUT0 selected
0	0	0	1	OUT1 selected
0	0	1	0	OUT2 selected
0	0	1	1	OUT3 selected
0	1	0	0	OUT4 selected
0	1	0	1	OUT5 selected
0	1	1	0	OUT6 selected
0	1	1	1	OUT7 selected
1	0	0	0	OUT8 selected
1	0	0	1	OUT9 selected
1	0	1	0	OUT10 selected
1	0	1	1	OUT11 selected
1	1	0	0	OUT12 selected
1	1	0	1	OUT13 selected
1	1	1	0	OUT14 selected
1	1	1	1	OUT15 selected

Serial Input Data Format and Control Codes

The 24-bit serial input format, shown in Figure 4, comprises 16 data bits (D15-D0), 4 address bits (A3-A0), 1 required zero bit after the address bits, 2 control bits (C1, CO), and a fill zero. The address code selects the output channel as shown in Table 2. The control code configures the device as follows:

1) If $\mathrm{C} 1=1$, immediate update mode is selected. If $\mathrm{C} 1=0$, burst mode is selected.
2) If $\mathrm{CO}=0$, the internal sequencer clock is selected. If C0 = 1, the external sequencer clock is selected. This must be repeated with each data word to maintain external input.
The operating modes can also be selected externally through CLKSEL and IMMED. In the case where the control bit in the serial word and the external signal conflict, the signal that is a logic 1 is dominant.

Figure 4. Input Word Sequence

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Table 3. Update Mode

UPDATE MODE	UPDATE TIME
Immediate update mode	$2 / f$ SEQ
Burst mode	$33 / \mathrm{fSEQ}$

Modes of Operation
The MAX5621/MAX5622/MAX5623 feature three modes of operation:

- Sequence mode
- Immediate update mode
- Burst mode

Sequence Mode

Sequence mode is the default operating mode. The internal sequencer continuously scrolls through the SRAM, updating each of the 16 SHAs. At each SRAM address location, the stored 16-bit DAC code is loaded to the DAC. Once settled, the DAC output is acquired by the corresponding SHA. Using the internal sequencer clock, the process typically takes $320 \mu \mathrm{~s}$ to update all 16 SHAs ($20 \mu \mathrm{~s}$ per channel). Using an external sequencer clock the update process takes 128 clock cycles (eight clock cycles per channel).

Immediate Update Mode

Immediate update mode is used to change the contents of a single SRAM location, and update the corresponding SHA output. In immediate update mode, the selected output is updated before the sequencer resumes operation. Select immediate update mode by driving either IMMED or C1 high.
The sequencer is interrupted when $\overline{\mathrm{CS}}$ is taken low. The input word is then stored in the proper SRAM address. The DAC conversion and SHA sample in progress are completed transparent to the serial bus activity. The SRAM location of the addressed channel is then modified with the new data. The DAC and SHA are updated with the new voltage. The sequencer then resumes scrolling at the interrupted SRAM address.
This operation can take up to two cycles of the sequencer clock. Up to one cycle is needed to allow the sequencer to complete the operation in progress before it is freed to update the new channel. An additional cycle is required to read the new data from memory, update the DAC, and strobe the sample-and-hold. The sequencer resumes scrolling from the location at which it was interrupted. Normal sequencing is suppressed while loading data, thus preventing other channels from

Figure 5. Immediate Update Mode Timing Example
being refreshed. Under conditions of extremely frequent immediate updates (i.e., 1000 successive updates), unacceptable droop can result.
Figure 5 shows an example of an immediate update operation. In this example, data for channel 12 is loaded while channel 7 is being refreshed. The sequencer operation is interrupted, and no other channels are refreshed as long as $\overline{C S}$ is held low. Once $\overline{C S}$ returns high, and the remainder of an fSEQ period (if any) has expired, channel 12 is updated to the new data. Once channel 12 has been updated, the sequencer resumes normal operation at the interrupted channel 7.

Burst Mode

Burst mode allows multiple SRAM locations to be loaded at high speed. During burst mode, the output voltages are not updated until the data burst is complete and control returns to the sequencer. Select burst mode by driving both IMMED and C1 low.
The sequencer is interrupted when $\overline{\mathrm{CS}}$ is taken low. All or part of the memory can be loaded while $\overline{\mathrm{CS}}$ is low. Each data word is loaded into its specified SRAM address. The DAC conversion and SHA sample in progress are completely transparent to the serial bus activity. When $\overline{\mathrm{CS}}$ is taken high, the sequencer resumes scrolling at the interrupted SRAM address. New values are updated when their turn comes up in the sequence.
After burst mode is used, it is recommended that at least one full sequencer loop ($320 \mu \mathrm{~s}$) is allowed to occur before the serial port is accessed again. This ensures that all outputs are updated before the sequencer is interrupted.

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Figure 6. Burst Mode Timing Example

Figure 6 shows an example of a burst mode operation. As with the immediate update example, CS falls while channel 7 is being refreshed. Data for multiple channels is loaded, and no channels are refreshed as long as $\overline{\mathrm{CS}}$ remains low. Once $\overline{\mathrm{CS}}$ returns high, sequencing resumes with channel 7 and continues normal refresh operation. Thirty-three fSEQ cycles are required before all channels have been updated.

External Sequencer Clock

An external clock can be used to control the sequencer, altering the output update rate. The sequencer runs at $1 / 4$ the frequency of the supplied clock (ECLK). The external clock option is selected by driving either CO or CLKSEL high.
When CLKSEL is asserted, the internal clock oscillator is disabled. This feature allows synchronizing the sequencer to other system operations, or shutting down of the sequencer altogether during high-accuracy system measurements. The low $1 \mathrm{mV} / \mathrm{s}$ droop of these devices ensures that no appreciable degradation of the output voltages occurs, even during extended periods of time when the sequencer is disabled.

Power-On Reset

A power-on reset (POR) circuit sets all channels to $0 V$ (code 4F2C hex) in sequence, requiring $320 \mu s$. This prevents damage to downstream ICs due to arbitrary reference levels being presented following system power-up. This same function is available by driving RST low. During the reset operation, the sequencer is run by the internal clock, regardless of the state of CLKSEL. The reset process cannot be interrupted, and serial inputs are ignored until the entire reset process is complete.

Figure 7. Typical Operating Circuit

Applications Information

Power Supplies and Bypassing Grounding and power-supply decoupling strongly influence device performance. Digital signals may couple through the reference input, power supplies, and ground connection. Proper grounding and layout can reduce digital feedthrough and crosstalk. At the device level, a $0.1 \mu \mathrm{~F}$ capacitor is required for the VDD, VSS, and $V_{L_{-}}$pins. They should be placed as close to the pins as possible. More substantial decoupling at the board level is recommended and is dependent on the number of devices on the board (Figure 7).
The MAX5621/MAX5622/MAX5623 have three separate +5 V logic power supplies, VLDAC, VLOGIC, and VLSHA. VLDAC powers the 16-bit digital-to-analog converter, VLSHA powers the control logic of the SHA array, and VLOGIC powers the serial interface, sequencer, internal clock and SRAM. Additional filtering of VLDAC and VLSHA improves the overall performance of the device.

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NDTES:

1. ALL DIMENSIONING AND TQLERANCING CDNFDRM TO ANSI Y14.5-1982.
2. DATUM PLANE HH- IS LDCATED AT MDLD PARTING LINE AND DATUM PLANE EH- IS LOCATED AT MDLD PARTING LINE AND
CDINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BDDY AT BDTTIM IF PARTING LINE
3. DIMENSIDNS DI AND E1 DD NDT INCLUDE MLLD PROTRUSION. ALLDWABLE MILD PROTRUSION IS 0.25 MM ON D1 AND E1 DIMENSIDNS.
4. THE TOP OF PACKAGE IS SMALLER THAN THE BOTtOM OF PACKAGE
5. BY 0.15 MILLIMETERS. DAMBAR PRDTRUSIUN SHALL BE 0.08 MM TOTAL IN EXCESS DF THE b DIMENSIDN AT MAXIMUM MATERIAL CDNDITIDN.
6. ALL DIMENSIDNS ARE IN MILLIMETERS

THIS UUTLINE CZNFIRMS TD JEDEC PUBLICATIUN 95, REGISTRATIUN EADS SHALL BE CDPLAN
88. LEADS SHALL BE CDPLANAR WITHIN . 004 INCH.
g. MARKING SHOWN IS FDR PACKAGE DRIENTATIDN REFERENCE $\square N L Y$.

JEDEC VARIATION		
	BCD	
	64 LEAD	
	MIN.	MAX.
A	---	1.60
A_{1}	0.05	0.15
A_{2}	1.35	1.45
D	11.80	12.20
D_{1}	9.80	10.20
E	11.80	12.20
E_{1}	9.80	10.20
e	0.50	
BSC		
L	0.45	0.75
b	0.17	0.27
b 1	0.17	0.23
c	0.09	0.20
c 1	0.09	0.16
\propto	0	7°

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

16-Bit DACs with 16-Channel Sample-and-Hold Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

PKG	68L 10×10			N
REF.	MIN.	NDM.	MAX.	
A	0.70	0.75	0.80	
Al	0.00	0.01	0.05	
A2	0.20 REF			
6	0.20	0.25	0.30	
D	9.90	10.00	10.10	
E	9.90	10.00	10.10	
e	0.50 BSC.			
k	0.25	-	-	
L	0.45	0.55	0.65	
N	68			
ND	17			
NE	17			
JEDEC	WNND-2			

EXPISED PAD VARIATIDNS							
PKG. CODE	D2			E2			
	MIN.	NOM.	MaX.	MIN.	NDM.	MAX.	
T6800-1	7.60	7.70	7.80	7.60	7.70	7.80	ND
T6800-2	7.60	7.70	7.80	7.60	7.70	7.80	YES
T6800-3	7.60	7.70	7.80	7.60	7.70	7.80	ND
T6800-4	7.60	7.70	7.80	7.60	7.70	7.80	YES

notes:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MLLIMETERS. ANGLeS ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD $95-1$ SPP-012. DETAILS OF TERMINAL \#1 IDENTIFER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \# 1 IDENTIFIER MAY BE EITHER A MOD OR MARKED FEATURE.
5. DIMENSION D APPLIES TO METALLIZED TERMINAL AND IS MEASURED between
0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER of TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SMMMETRICAL FASHION.
8. coplanarity applies to the exposed heat sink slug as well as the terminals.
9. DRAMNG CONFORMS TO JEDEC MO-220.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

